2019-2020 2020-2021 2021-2022 2022-2023 2023-2024
Browse
by subject...
    Schedule
view...
 

11 - 20 of 129 results for: BIO ; Currently searching offered courses. You can also include unoffered courses

BIO 35: Sustainability and Civilization (HISTORY 35, POLISCI 35)

Our civilization faces multiple sustainability challenges. Climate change often dominates public conversation, but in fact, a whole range of environmental, economic, political, and cultural trends threaten the structures that sustain the societies we know. These problems cannot be understood in isolation, because they interact in complex ways. Solving them will require collaboration across many different fields, from the natural and social sciences to the humanities. This one-unit course brings together over two dozen faculty from across the entire university for a series of interdisciplinary conversations around cross-cutting themes. Our aim is to encourage dialogue and perhaps even future collaborations among students and professors who might otherwise rarely interact in a classroom. All students are welcome, but frosh and sophomores may find the course especially useful as an introduction to a wide range of sustainability-related disciplines and teachers at Stanford.
Terms: Win | Units: 1

BIO 35N: Catching up with Traditional Ecological Knowledge

Traditional ecological knowledge--the knowledge developed and maintained by local communities over many generations about their natural environment--is increasingly recognized as fundamental to solving environmental problems. In this seminar, we will explore some of the cutting-edge research on traditional ecological knowledge and its conceptual and practical role in ensuring environmental sustainability. We will address some key questions. For example, what makes traditional ecological knowledge different from Western science? What led to the recent increase in Western scientists' appreciation of traditional ecological knowledge? How can traditional ecological knowledge inform environmental sustainability in a world that is undergoing rapid climate change, land use change, and biological invasion? And how can Western science complement traditional ecological knowledge to achieve sustainability? The core of this seminar will be discussion based on reading of primary articles. We will also have field trips and learn from guest speakers.
Terms: Spr | Units: 3 | UG Reqs: WAY-SMA
Instructors: Fukami, T. (PI)

BIO 40S: Advances in Cancer Biology Research and Cancer Treatments

Cancer is a ubiquitous global challenge - most families will be affected by it at some point in their lives. However, recent advancements in cancer treatment and prevention offer hope. In this course, we will delve into the fascinating world of cancer biology to explore groundbreaking research and treatment options. Diving deep into the inner workings of cancer cells, we will discover the potential of revolutionizing treatments such as CAR T immunotherapy, a cutting-edge technique that genetically modifies a patient's own immune cells to recognize and attack cancer cells. We'll also explore the crucial role of the cellular environment around tumors and learn how targeting this microenvironment can improve the effectiveness of existing therapies. We'll examine the unique nutrient requirements of cancer cells and how this knowledge can be used to selectively kill cancer cells while sparing healthy ones. And we'll discuss the power of biomarkers in developing tailored therapies that can s more »
Cancer is a ubiquitous global challenge - most families will be affected by it at some point in their lives. However, recent advancements in cancer treatment and prevention offer hope. In this course, we will delve into the fascinating world of cancer biology to explore groundbreaking research and treatment options. Diving deep into the inner workings of cancer cells, we will discover the potential of revolutionizing treatments such as CAR T immunotherapy, a cutting-edge technique that genetically modifies a patient's own immune cells to recognize and attack cancer cells. We'll also explore the crucial role of the cellular environment around tumors and learn how targeting this microenvironment can improve the effectiveness of existing therapies. We'll examine the unique nutrient requirements of cancer cells and how this knowledge can be used to selectively kill cancer cells while sparing healthy ones. And we'll discuss the power of biomarkers in developing tailored therapies that can significantly improve cancer patients' quality of life. Class sessions will include lectures and interactive discussions and activities. By the end of this course, students will have gained a solid understanding of cell biology, how cancer operates, and how - through scientific advances - it might eventually be stopped.
Terms: Sum | Units: 3
Instructors: Armenta, D. (PI)

BIO 43: Introduction to Laboratory Research in Neuronal Cell Biology

This course provides an authentic research experience where you will study the consequences of disease-related mutations in a neuronal kinesin (KIF1A). You will evaluate scientific arguments; make discoveries by generating, testing, and revising hypotheses; communicate findings to others through oral and poster presentations; and build confidence in yourselves as scientific thinkers. To do so, you will use behavioral, genetic, and cell biological tools to assay how KIF1A mutations affect C. elegans neurons, and connect your findings to clinical severity. Completed or co-requisite in introductory courses in cell and molecular biology ( BIO 82 and 83 or HUMBIO 2A and 3A) and ( CHEM 31A and 31B or CHEM 31M).
Terms: Aut, Spr | Units: 4

BIO 45: Introduction to Laboratory Research in Cell and Molecular Biology

Use modern molecular approaches to characterize a particular tumor-associated mutation in the human p53 tumor suppressor gene via expression and analysis in a yeast model system. Learn about the role of p53 as Guardian of the Genome and consider novel p53-directed tumor therapies through lectures and by reading and discussing journal articles. Use molecular visualization programs to examine the structure of the normal p53 protein and localize the alteration induced by the mutation you are investigating. Assay the ability of mutant p53 to activate expression of multiple reporter genes. Through facilitated discussions with teams of other students studying the same p53 mutant, consider a series of molecular explanations for your p53 mutant's functional defects. Conduct lab experiments to test these hypotheses, analyze data, collaboratively interpret these data, and present your findings through a team oral presentation, as well as a scientific poster. Although there are no pre-requisites to enroll in this class, it will be helpful if you have already taken or are concurrently enrolled in introductory courses in cell and molecular biology ( BIO 82 and 83 or HUMBIO 2A and 3A) and general chemistry ( CHEM 31A and 31B or CHEM 31M).
Terms: Aut, Win | Units: 4

BIO 46: Introduction to Research in Ecology and Evolutionary Biology (EARTHSYS 46)

The goal of this course is to develop an understanding of how to conduct biological research, using topics in Ecology as practical examples. This includes the complete scientific process: assessing background literature, generating testable hypotheses, learning techniques for data collection, analyzing data using appropriate statistical methods and writing and sharing results. Students, working in teams, develop novel research hypotheses and execute the necessary experiments and measurements to test these hypotheses. In addition, students will learn how to manipulate, visualize, and analyze data in the statistical programming language R. The capstone of the course is a research paper in the style of a peer-reviewed journal article, as well as a group presentation designed for a general audience that communicates research findings. The Tuesday lecture session will generally meet for only about 60-70 minutes. IMPORTANT NOTE: Students who require BIO 46 to satisfy the WIM requirement for the Biology major MUST take this course for a letter grade. Please contact Elisa Mora (elisahm@stanford.edu) for logistical and enrollment questions.
Terms: Win | Units: 4 | UG Reqs: WAY-SMA

BIO 47: Introduction to Research in Ecology and Evolutionary Biology (EARTHSYS 47)

The goal of this course is to develop an understanding of how to conduct biological research, using a topic in Ecology, Evolutionary Biology, and Plant Biology as a practical example. This includes the complete scientific process: assessing background literature, generating testable hypotheses, learning techniques for field- and lab-based data collection, analyzing data using appropriate statistical methods, and, finally, writing and sharing your results. To build these skills, this course will focus on nectar microbes at Stanford's nearby Jasper Ridge Biological Preserve. Students, working in teams, will develop novel research hypotheses and execute the necessary experiments and measurements to test these hypotheses. The capstone of the course is an oral presentation of student teams' research findings, as well as a research paper written in the style of a peer-reviewed journal article. Labs will be completed both on campus and at Jasper Ridge. Although there are no pre-requisites to enroll in the class, it will be helpful if you have already taken BIO 81 or HUMBIO 2A. IMPORTANT NOTE: Satisfies WIM requirement in Biology but must be taken for a letter grade.
Terms: Spr | Units: 4

BIO 50S: Introduction to Cancer Biology

This course will examine the biological processes that are disrupted in cancer, such as DNA repair, cell cycle control, and signaling pathways. Students will learn the molecular mechanisms by which tumors gain and maintain a growth advantage and of potential therapeutic targets. This course will also explore the science behind cancer prevention, diagnosis, and treatments as well as emerging topics in the field such as cancer stem cells. Prerequisites: General biology & chemistry.Students are required to attend their assigned discussion section each week.
Terms: Sum | Units: 3
Instructors: Chung, J. (PI)

BIO 71: Planet Ocean (ESS 71, OCEANS 71)

Oceans make up the majority of our planet's area and living spaces and are fundamental to biodiversity, climate, food and commerce.This course covers integration of the oceanography and marine biology of diverse ocean habitats such as the deep sea, coral reefs, open ocean, temperate coasts, estuaries and polar seas. Lectures include state of the art knowledge as well as emerging technologies for future exploration. The second section focuses on how the oceans link to the global environment, and how ocean capacity helps determine human sustainability.
Terms: Win | Units: 4 | UG Reqs: WAY-SMA

BIO 74: Sustainability in Marine Organisms: Learning from the Evolutionary Survivors (OCEANS 74H)

While climate change has impacted life at land and sea, it's impossible to know exactly how fast species will adapt to warmer and more acidic sea water, and which species will survive into the future. In this course we will explore ancient marine organisms that have adapted and survived to diverse environmental changes across millions years of evolution, in order to better understand the molecular cellular and communal elements that allowed for their success. The course will include observation and experimentation with diverse marine organisms, lectures, readings, writings, and discussions. Course taught in-person only at Hopkins Marine Station. Round-trip university shuttle provided.
Terms: Win | Units: 4
Filter Results:
term offered
updating results...
teaching presence
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints