Skip to content Skip to navigation

Simon Sponberg, "Insights from insects: timing, precision, and context in the neuromechanical control of agile animal movement"

February 23, 2017 - 12:15pm to 1:15pm
Sapp Science Teaching and Learning Center, Room 114

Free and open to the public.

Abstract: Organisms negotiate many complex environments, demonstrating remarkable stability, maneuverability, and multifunctionality. What are the mechanisms that enable organisms to achieve this robust, agile movement? Using quantitative behavior, neuroethology, and muscle physiology, my lab investigates how neural systems operate in the context of the mechanics of body and environment. We will explore three principles that emerge from this perspective. 1) We have discovered that the power output of muscles across a large diversity of animals has sensitive dependence on the timing of activation. Precise neural control matches the sensitivities of muscle mechanics. 2) Using control theoretic approaches, we have shown that when moths visually track flowers in extremely low light levels, they slow their nervous systems to increase light sensitivity. However they only slow to the point where they can still track the movements that natural flowers blow in the wind. To increase robustness they also rely on mechanosensory cues from their long proboscis. Ecological context shapes neuromechanical control. 3) Finally we have simultaneously recorded from nearly all the motor units controlling the movement of the moth’s wings. Using information theoretic tools we find that timing of motor activation encodes more information than the amount of activation during these moderately fast behaviors. By treating locomotion as the emergent behavior of multiple interacting dynamic physiological systems, we can converge on neuromechanical principles that underlie an integrative science of movement.

Event Sponsor: 
Department of Biology
Contact Email: 
May Chin
Contact Phone: