Skip to content Skip to navigation

How soil fungi respond to wildfire

Picture of Oak and evergreen trees in Hood Mountain Regional Park and Preserve in Santa Rosa in August 2019

Oak and evergreen trees in Hood Mountain Regional Park and Preserve in Santa Rosa in August 2019.

Gabriella Selva
Jan 7 2021

Posted In:

Research, Faculty, Students

When wildfires swept through the North Bay in 2017, graduate student Gabriel Smith saw a unique opportunity to study how fire affected his research subject: soil fungi.

“I wanted to know how these ecosystems that, on the outside, looked so burned and so destroyed might have been affected at a level that is not so obvious – the soil fungi that I study,” said Smith, who is a member of the lab of Kabir Peay, an associate professor of biology in the School of Humanities and Sciences. Most people know soil fungi by their fruit – mushrooms – but there’s much more to these organisms, both physically and functionally. Working alongside plant roots and other microbes that live in the soil, soil fungi play important roles in their ecosystems, including helping trees grow and aiding in decomposition.

The research, which was published Dec. 9 in Molecular Ecology, focused on two ecosystems in these parks, oak woodland and mixed evergreen forest. As the researchers expected, analysis of dozens of soil samples established that, among the areas that had not burned, the ecosystems contained a different mix of soil fungi.

Back at the Stanford lab, Smith and Lucy Edy, a co-term student in earth systems who worked on this project as part of the Stanford Biology Summer Undergraduate Research Program, determined what fungi resided in each sample through DNA analysis. What he found suggests that how fungal communities respond to fire belowground mirrors how other parts of their ecosystems respond to fire above ground.

This project, born from terrible circumstances, will likely produce many more studies, like the seedling experiments, and further investigations into how the fungal communities in the oak woodlands withstand fire.

“This was not originally part of Gabriel’s PhD project. He had the foresight to recognize that this is not just something that was interesting on a personal level, but also that there’s nice intellectual potential here,” said Peay. “Works like this can advance our understanding of how the changes we see in the soil might then play a role in changing what future ecosystem types look like.”