Skip to content Skip to navigation

Researchers create 'Olympian' mice by stabilizing brain connections involved in skill learning

Carla Shatz
Oct 12 2021

Posted In:

Research, Faculty

The idea that a drug could break through the brain's limitations to release our untapped potential has been fodder for many a science fiction tale, but a new study suggests this may not be as far-fetched as you might think. In fact, it could lead to new treatments for neurodegenerative conditions such as Parkinson’s and Alzheimer’s diseases.

When we learn a new skill, whether taking up cross-stitching or practicing a killer serve, the brain must learn to coordinate the dozens or hundreds of muscles involved in the task — what we colloquially refer to as “muscle memory.” In reality, this information is stored in new synaptic connections in the brain’s motor cortex, an arc of brain tissue located about where you might wear a headphone headband. Researchers have shown in animal studies that the memory of a specific skill can even be wiped out by selectively eliminating the relevant connections.

In the new study, published August 25, 2021 in Neuron, researchers with the Wu Tsai Neurosciences Institute at Stanford turned mice into “super-learners” by doing the opposite — stabilizing the new connections formed while animals learned a tricky new movement. This change, which involved inactivating a single protein found at the synaptic connections between brain cells, allowed mice to learn better, faster, and more durably.

The research represents the fruits of a collaboration between the labs of Jun Ding, PhD, which uses cutting-edge techniques to study the brain’s movement planning circuitry, and of Carla Shatz, PhD, which is famed for its seminal work understanding synaptic plasticity — the capacity of brain connections to strengthen and weaken during learning and early brain development.

“This has been a wonderful convergence of our labs — driven by neurodegeneration on one hand and neuroplasticity on the other,” Shatz said. “Our hope is to take the lessons we’ve learned from the young brain about why kids learn so rapidly and adults don't, and combine it with what we are learning about the loss of plasticity in neurodegenerative disorders like Parkinson’s and Alzheimers, to eventually lead to interventions that can potentially restore function and improve quality of life.”